Neue E-Phasen

Von

E. Ganglberger, H. Nowotny und F. Benesovsky

Aus dem Institut für physikalische Chemie der Universität Wien und dem Metallwerk Plansee AG., Reutte, Tirol

(Eingegangen am 7. Oktober 1966)

Die Kristallstruktur von TaNiGe wird mit Hilfe einer Fouriersynthese bestimmt und als geordneter PbCl₂-Typ erkannt. Damit wird die Struktur der E-Phasen, welche von *Clara B.* und *D. P. Shoemaker* an TiNiSi bereits ermittelt wurde, bestätigt. Folgende neue E-Phasen werden aufgefunden, die Gitterparameter ermittelt: ZrPdSi, ZrPtSi, ZrPtGe, ZrCuSi, ZrCuGe, HfFeSi, HfCoSi, HfCoGe, HfNiSi, HfNiGe, HfCuSi, TaNiGe. Ferner werden die Gitterparameter der schon bekannten *E*-Phasen NbNiSi, TaFeGe und TaCoGe bestimmt.

The crystal structure of TaNiGe has been examined by means of a Fourier-Synthesis. TaNiGe was found to be isotypic with TiNiSi (ordered PbCl₂-type) already described by *Clara B*. and *D. P. Shoemaker* The lattice parameters of the following *E*-phases have been determined: ZrPdSi, ZrPtSi. ZrPtGe, ZrCuSi, ZrCuGe, HfFeSi, HfCoSi, HfCoGe, HfNiSi, HfNiGe, HfCuSi, TaNiGe, NbNiSi, TaFeGe and TaCoGe.

Eine Anzahl von *E*-Phasen wurde von *Spiegel, Bardos* und *Beck*¹ bei Siliciden und Germaniden aufgefunden. Die Kristallstruktur von TiNiSi als typischer Vertreter von *E*-Phasen konnte vor einiger Zeit durch *Shoemaker* und *Shoemaker*² aufgeklärt werden. Die *E*-Phase gehört danach zum geordneten PbCl₂-Typ. Die genannten Autoren diskutieren auch den engen Zusammenhang zwischen dem Aufbau der *E*-Phasen und anderen Siliciden, wie z. B. Co₂Si oder θ -Ni₂Si. Im Laufe einer systematischen Untersuchung von Silicid- und Germanid-Dreistoffen mit Übergangs-

¹ F. X. Spiegel, D. Bardos, P. A. Beck, Trans. Amer. Inst. Min. (metall) Engrs. **227**, 575 (1963).

² Clara B. Shoemaker und D. P. Shoemaker, Acta Cryst. 18, 900 (1965).

metallen (T) konnten neben G-Phasen³ neue E-Phasen identifiziert werden.

Die E-Phasen bilden sich leicht nach Sintern der pulverförmigen Komponenten bei etwa 1000° C aus Ansätzen $T^{I}: T^{II}: (Si, Ge) = 1:1:1.$

 Phase	a	Ъ	С	
 ZrPdSi	6.59	7.57	3.89	
ZrPtSi	6.59	7.53	3.90	
ZrPtGe	6.63	7.66	3.97	
ZrCuSi	6,50	7.29	3,92	
ZrCuGe	6,58	7.31	3.99	
HfFeSi	6.32	7.12	3.91	
HfCoSi	6.37	7.08	3,83	
HfCoGe	6.45	7.22	3.90	
HfNiSi	6.39	7.20	3,89	
HfNiGe	6,50	7.29	3.81	
HfCuSi	6.43	7.24	3,88	
NbNiSi	6.20	7.06	3.68	
TaFeGe	6.24	7.22	3.78	
TaCoGe	6.29	7.14	3.74	
TaNiGe	6,27	7,17	3,76	

Tabelle 1. Gitterkonstanten (Å) von E-Phasen

In Tab. 1 sind die Gitterparameter auf Grund von Pulveraufnahmen der E-Phasen in den Systemen: Zr - {Pd, Pt, Cu}-Si; Zr - {Pt, Cu} - Ge; $Hf = {Fe, Co, Ni, Cu} = Si; Hf = {Co, Ni} = Ge; Nb = Ni = Si und$

	x	У	Z	
Ta	0,0197	0,1801	0,2500	
Ni	$0,176_{8}$	$0,570_{9}$	0,2500	
Ge	$0,775_{0}$	$0,624_0$	0,2500	

Tabelle 2. Atomparameter von TaNiGe

Ta -- {Fe, Co, Ni} -- Ge zusammengestellt. Davon waren NbNiSi, TaFeGe und TaCoGe bereits als *E*-Phasen beschrieben¹.

Da der R-Wert bei der Bestimmung von TiNiSi verhältnismäßig hoch ist, wurde an Hand eines Einkristalles $(0.05 \times 0.05 \times 0.2 \text{ mm})$ von TaNiGe eine erneute Festlegung der Parameter mit Hilfe einer Fouriersynthese für (hk0) durchgeführt. Die Absorption wurde allerdings auch

³ E. Ganglberger, H. Nowotny und F. Benesovsky, Mh. Chem. 96, 1206 (1965).; Mh. Chem. 97, 220 (1966).

hier nicht berücksichtigt. Es ergeben sich dabei nachstehende Parameter (Tab. 2).

Obige Parameter sind gegenüber jenen von TiNiSi nicht wesentlich verschieden. Für die (hk0)-Reflexe ergibt sich ein Zuverlässigkeitswert von rund 15%; Tab. 3 zeigt eine Gegenüberstellung von berechneten und

 h	k	Fexp	Fber	h	k	Fexp	$^{\mathrm{F}}\mathrm{ber}$	
 2	0	47	+42	3	4	25	+ 37	
4	0	88	+107	3	5	38	+ 37	
6	0	76	+ 65	3	6	14	+ 15	
0	2	43	49	3	7	0	- 19	
0	4	81	-66	4	1	36	39	
0	6	46	+ 49	4	2	66	- 57	
0	8	46	-62	4	3	0	-2	
1	1	32	+ 29	4	4	50	39	
1	2	20	+7	4	5	0	9	
1	3	99	-104	4	6	71	+ 63	
1	4	0	— 17	4	7	49	-45	
1	5	83	+ 87	5	1	0	5	
1	6	46	- 48	5	2	0	1	
1	7	0	+ 3	5	3	64	-55	
1	8	0	+ 4	5	4	64	+62	
2	1	25	-22	5	5	69	+74	
2	2	95	84	5	6	24	-32	
2	3	27	+ 25	6	1	64	61	
2	4	24	+ 23	6	2	38	-22	
2	5	43	+ 39	6	3	26	+ 5	
2	6	90	+86	6	4	0	+ 1	
2	7	25	-25	6	5	40	+ 48	
2	8	60	-77	7	1	39	+ 35	
3	1	88	+ 88	7	2	62	71	
3	2	67	-59	7	3	66	60	
3	3	104	92	7	4	36	+ 30	

Tabelle 3. Experimentelle und berechnete F-Werte für (hk0)-Reflexe von TaNiGe

beobachteten Intensitäten. Wegen der guten Übereinstimmung besteht kein Hinweis für Annahme einer nennenswerten Unordnung von Tantalund Nickelatomen, was auch durch die Auswertung der Pulveraufnahme in Tab. 4 gestützt wird. Ebenso ist die Intensitätsberechnung für ZrPtGe mit den gleichen Atomparametern und vollständig geordneter Struktur zufriedenstellend. Die einzelnen *E*-Phasen unterscheiden sich zum Teil merklich in der pseudohexagonalen Symmetrie $(2a/b \approx \sqrt[3]{3})$.

Dem US-Government wird für teilweise Unterstützung gedankt. Monatshefte für Chemie, Bd. 98/1 7

(hkl)	10 ³ sin ² ⁶ ber.	10 ^ª sin ² ^θ beob.	I _{ber} ,	Ibeob.
(110)	58,9		51	
(020)	102,1		41	
(011)	118,1	118,1	85	+s
(200)	133,6	133,1	22	s
(120)	135,5		1	
(111)	151,7		2	
(210)	159,0		10	
(201)	226,5		25	
(121)	230,0	230,6	288	st
(220)	237,6	238,0	88	+s
(211)	252,0	251,5	424	\mathbf{st}
(130)	262,9	262,2	117	m
(031)	322,1	322,4	73	— m
(310)	326,0	325,9	65	—— m
(221)	330,4		0	
(131)	355,5	355,5	35	s
(230)	364, 6		5	
(002)	370,5	370,6	117	m
(320)	404,5	404,6	23	s
(040)	408,5	408,0	15	SS
(311)	418,5		0	
(112)	430,2		7	
(140)	441,9		2	
(231)	456,1		6	
(022)	473,5		10	
(321)	495,3		8	
(202)	504,8		8	
(122)	506, 8		0	
(330)	530,0լ	529 7	47	— m
(212)	530,4∫	020,1	4∫	111
(400)	534,0 _\	534 0	32	+ m
(141)	534,5	002,0	705	1
(240)	542,0		3	
(410)	559,5		8	
(222)	608,1	609,1	55	m
(331)	623,0		1	
(401)	626,8		14	
(132)	633,4	634,5	88	m
(241)	634,8		0	
(420)	638,0	637,8	18	SS
(411)	652,1	052,8	37 49	s
(150)	071,4	071,0	45 67	s
(312)	696,0 0	090,4	0/	111
(340)	708,9		6	
(421)	730,0	730,1 —	18	- m diff
(001) (000)	722 6	733,2	8	
(232)	100,01		٩J	

Tabelle 4. Auswertung einer Pulveraufnahme von TaNiGe; $CrK\alpha$

Fortsetzung Seite 99

H. 1/1967]

Tabelle 4 (Fort	setzung)
-----------------	----------

(<i>hkl</i>)	10° sin² ⁹ ber.	10 ³ sin ² 9 beob.	Iber.	I _{beob} .
(430)	763,8		0	
(151)	764,5		0	
(250)	771,6		10	
(322)	775,0	775,2	37	s
(042)	779,0	779,6	23	s
(341)	801,6	800,9	183	st
(142)	813,2		3	
(431)	856,6		18	
(510)	859,9		0	
(013)	861,0		17	
(251)	864,2	864,5	63	m
(113)	894,4		1	
(332)	900,5	900,4	154	\mathbf{st}
(402)	804,5	904,5	106	— st
(242)	913,3		9	
(060)	919,1		15	
(412)	930,9	<u> </u>	34	
(520)	936,5		0	
(350)	938,6		21	
(440)	942,5		23	
(160)	951,4)	029 4	40)	- 4
(511)	952,1	902,4	100}	st
(203)	969,0		$23^{'}$	
(123)	971,0	971,0	278	sst